时间: 2020-09-03 00:08:26 人气: 2444 评论: 0
比BERT模型参数小18倍,性能还超越了它。
这就是谷歌前不久发布的轻量级BERT模型——ALBERT。
不仅如此,还横扫各大“性能榜”,在SQuAD和RACE测试上创造了新的SOTA。
而最近,谷歌开源了中文版本和Version 2,项目还登上了GitHub热榜第二。
ALBERT 2性能再次提升
在这个版本中,“no dropout”、“additional training data”、“long training time”策略将应用到所有的模型。
与初代ALBERT性能相比结果如下。
预训练模型
可以使用 TF-Hub 模块:
Base [Tar File]: https://storage.googleapis.com/albert_models/albert_base_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_base/1
Large [Tar File]: https://storage.googleapis.com/albert_models/albert_large_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_large/1
XLarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xlarge_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xlarge/1
Xxlarge [Tar File]: https://storage.googleapis.com/albert_models/albert_xxlarge_v1.tar.gz [TF-Hub]: https://tfhub.dev/google/albert_xxlarge/1
TF-Hub模块使用示例:
tags=set()ifis_training:tags.add("train")albert_module=hub.Module("https://tfhub.dev/google/albert_base/1",tags=tags,trainable=True)albert_inputs=dict(input_ids=input_ids,input_mask=input_mask,segment_ids=segment_ids)albert_outputs=albert_module(inputs=albert_inputs,signature="tokens",as_dict=True)#Ifyouwanttousethetoken-leveloutput,use#albert_outputs["sequence_output"]instead.output_layer=albert_outputs["pooled_output"]
要预训练ALBERT,可以使用run_pretraining.py:
pipinstall-ralbert/requirements.txtpython-malbert.run_pretraining\--input_file=...\--output_dir=...\--init_checkpoint=...\--albert_config_file=...\--do_train\--do_eval\--train_batch_size=4096\--eval_batch_size=64\--max_seq_length=512\--max_predictions_per_seq=20\--optimizer='lamb'\--learning_rate=.00176\--num_train_steps=125000\--num_warmup_steps=3125\--save_checkpoints_steps=5000
要对 GLUE 进行微调和评估,可以参阅该项目中的run_glue.sh文件。
底层的用例可能希望直接使用run_classifier.py脚本。
run_classifier.py可对各个 GLUE 基准测试任务进行微调和评估。
比如 MNLI:
pipinstall-ralbert/requirements.txtpython-malbert.run_classifier\--vocab_file=...\--data_dir=...\--output_dir=...\--init_checkpoint=...\--albert_config_file=...\--spm_model_file=...\--do_train\--do_eval\--do_predict\--do_lower_case\--max_seq_length=128\--optimizer=adamw\--task_name=MNLI\--warmup_step=1000\--learning_rate=3e-5\--train_step=10000\--save_checkpoints_steps=100\--train_batch_size=128
可以在run_glue.sh中找到每个GLUE任务的default flag。
从TF-Hub模块开始微调模型:
albert_hub_module_handle==https://tfhub.dev/google/albert_base/1
在评估之后,脚本应该报告如下输出:
*****Evalresults*****global_step=...loss=...masked_lm_accuracy=...masked_lm_loss=...sentence_order_accuracy=...sentence_order_loss=...
要对 SQuAD v1上的预训练模型进行微调和评估,请使用 run SQuAD v1.py 脚本:
pipinstall-ralbert/requirements.txtpython-malbert.run_squad_v1\--albert_config_file=...\--vocab_file=...\--output_dir=...\--train_file=...\--predict_file=...\--train_feature_file=...\--predict_feature_file=...\--predict_feature_left_file=...\--init_checkpoint=...\--spm_model_file=...\--do_lower_case\--max_seq_length=384\--doc_stride=128\--max_query_length=64\--do_train=true\--do_predict=true\--train_batch_size=48\--predict_batch_size=8\--learning_rate=5e-5\--num_train_epochs=2.0\--warmup_proportion=.1\--save_checkpoints_steps=5000\--n_best_size=20\--max_answer_length=30
对于 SQuAD v2,使用 run SQuAD v2.py 脚本:
pipinstall-ralbert/requirements.txtpython-malbert.run_squad_v2\--albert_config_file=...\--vocab_file=...\--output_dir=...\--train_file=...\--predict_file=...\--train_feature_file=...\--predict_feature_file=...\--predict_feature_left_file=...\--init_checkpoint=...\--spm_model_file=...\--do_lower_case\--max_seq_length=384\--doc_stride=128\--max_query_length=64\--do_train\--do_predict\--train_batch_size=48\--predict_batch_size=8\--learning_rate=5e-5\--num_train_epochs=2.0\--warmup_proportion=.1\--save_checkpoints_steps=5000\--n_best_size=20\--max_answer_length=30
GitHub项目地址: https://github.com/google-research/ALBERT
本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。
-深蓝源码网-www.69shenlan.com