时间: 2021-07-30 09:20:52 人气: 10 评论: 0
在这个数据为王的时代,作为一个产品经理或者增长黑客,数据分析是必修课之一。提到数据分析,肯定要提到数据分析模型,在进行数据分析之前,先搭建数据分析模型,根据模型中的内容,具体细分到不同的数据指标进行细化分析,最终得到想要的分析结果或结论。
要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。
数据分析方法论的作用:
(1)政治环境
包括一个国家的社**制度,执政党性质,政府的方针、政策、法令等。不同的政治环境对行业发展有不同的影响。
关键指标:政治体制,经济体制,财政政策,税收政策,产业政策,投资政策,专利数量,国防开支水平,政府补贴水平,民众对政治的参与度。
(2)经济环境宏观和微观两个方面。
关键指标:GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。
(3)社**环境
包括一个国家或地区的居民受教育程度和文化水平、宗教信仰、风俗习惯、审美观点、价值观等。文化水平营销居民的需求层次,宗教信仰和风俗习惯**禁止或抵制某些活动的进行,价值观**影响居民对组织目标和组织活动存在本身的认可,审美观点则**影响人们对组织活动内容、活动方式以及活动成果的态度。
关键指标:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。
(4)技术环境
企业所处领域直接相关的技术手段发展变化,国家队科技开发的投资和支持重点,该领域技术发展动态和研究开发费用总额,技术转移和技术商品化速度,专利及其保护情况。
关键指标:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况。
5W2H分析法主要针对5个W以及2个H提出的7个关键词进行数据指标的选取,根据选取的数据进行分析。
将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。
把一个已知问题当作树干,考虑这个问题和哪些问题有关,将相关的问题作为树枝加入到树干,一次类推,就**将问题扩展成一个问题树。
逻辑树能保证解决问题的过程完整性,将工作细化成便于操作的具体任务,确定各部分优先顺序,明确责任到个人。
逻辑树分析法三原则:
(1)产品
能提供给市场,被人们使用和消费并满足人们某种需求的任何东西,包括有形产品、服务、人员、组织、观念和它们的组合。
(2)价格
购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响价格的主要因素有需求、成本和竞争。
(3)渠道
产品从生产企业流转到用户手上全过程所经历的各个环节。
(4)促销
企业通过销售行为的改变来激励用户消费,以短期的行为促进消费的增长,吸引其他品牌用户或导致提钱消费来促进销售增长。
用户行为指用户为获取、使用产品或服务才去的各种行动,首先要认知熟悉,然后试用,再决定是否继续消费使用,最后成为产品或服务的忠实用户。
行为轨迹:认知->熟悉->试用->使用->忠诚
五大数据分析模型的应用场景根据数据分析所选取的指标不同也有所区别。
PEST分析模型主要针对宏观市场环境进行分析,从政治、经济、社**以及技术四个维度对产品或服务是否适合进入市场进行数据化的分析,最终得到结论,辅助判断产品或服务是否满足大环境。
5W2H分析模型的应用场景较广,可用于对用户行为进行分析以及产品业务分析。
逻辑树分析模型主要针对已知问题进行分析,通过对已知问题的细化分析,通过分析结论找到问题的最优解决方案。
4P营销**模型主要用于公司或其中某一个产品线的整体运营情况分析,通过分析结论,辅助决策近期运营计划与方案。
用户行为分析模型应用场景比较单一,完全针对用户的行为进行研究分析。
当然,最后还是要说,模型只是前人总结出的方式方法,对于我们实际工作中解决问题有引导作用。但是不可否认,具体问题还要具体分析,针对不同的情况需要进行不同的改进,希望成为一个数据专家,最重要的一点还是多实践!实践才是真理!
作者:记小忆
来源:微信公众号【PM龙门阵】
本文由 @记小忆 授权发布于人人都是产品经理,未经作者许可,禁止转载。