时间: 2021-07-30 10:48:07 人气: 5 评论: 0
编辑导读:数据分析工作就是从一堆看似杂乱无章的数据中找到有用的价值,工作也是如此,越做越清晰。本文作者从他过去的B端数据分析工作中总结经验,和大家分享,一起来看一下吧。
最近也越来越喜欢Dambisa Moyo的这句话,
“The best time to plant a tree was 10 years ago. The second best time is now.”
我是西索,距离2011年6月22日,到现在是真正意义上做了十年数据分析,十年前没有种好树,十年后我想重新开始积累。工作之后的前两年是面向于C端的零售行业,余下的八年都沉浸在B端领域里面,研究数据增值、变现的场景。
前一阵子在[一个数据人的自留地]群里发了一个问题:
对于to B的公司,要不要做企业画像? 如何做企业画像? 结果一石激起千层浪,大家讨论非常热烈。原来一直以为用户画像在to C的公司用的比较多,没想到服务B端的企业也有这么多人在关注,大家一致认为企业画像是有必要的。然而大家的分歧在于:如何做?人肉做,还是大数据,是否需要用到大数据?
和simba大佬聊完之后,大佬出了一系列文章,分享了如何做B端的画像。看完之后产生了一些感触和想法,C端的分析案例一搜一箩筐,但是B端的案例是真的少。
老实说,数据就是一团浆糊,越搅越糊,至今还没怎么真正把数据的价值和意义搞懂,每天一个踩坑知识点,过山车一样的刺激,懂的人自然懂。于是就想把过去在B端里面的分析场景整理出来进行分享,一方面给过去这十年做一个简单的复**,另一方面也看看能不能得到一些共鸣,产生新的idea,欢迎私信来交流。
做数据,欲速而不达,慢就是快,需要稳扎稳打把脉络理清楚,后面在应用的时候就**清晰很多。
在B端做分析,时刻记牢的几个关键要素:“营收”、“影响”、“知名度”。
首先必须是“营收”,区别于C端消费,B端的决策周期长,从触达到产生订单之间的过程很难做归因,对数据而言,获取线索比直接看;
然后才是“专业”,需要对生意、行业、企业经营、业务(市场、营销、供应链仓储物流、商品、运营、客服、研发)上的概念有比较全面的了解,否则很难和业务保持在同一个沟通层面,很容易被评价为不懂业务;
再后就是“方法”,在B端如果能往外延伸触达到客户,所接触到的对象非富即贵,不是老板就是高官,不同的场合下用的“道”、“术”、“器”都进行区别,变则通,见人说人话,见鬼说鬼话;
合同金额、付费用户数、付费转化率、用户客单价、用户流失率、商机线索量、市场占有率;
对于绝大多数B类用户的研究,接触到的对象一般都是以中小型的B端公司为主;只有在KA用户里面,有少部分是真正大规模的企业、品牌商,这类公司的组织形态又极其复杂,可能所对接的业务只是贵司其中很小的一个模块而已。
产品是B端业务的根本,市场开发是业务营收的关键,而服务是业务稳定增长的核心。
通过服务扩散产品价值增益,维护老客的稳定接触,建立市场口碑,吸引更多的新客户。
不同的业务下,产品模式不一样,在结果体现上区别就**更大,以至于有很多业务线上的数据量级极小,甚至于根本谈不上大数据分析,就更谈不上所谓的算法和工程。
通过下表,对比下B端和C端之间的场景差异。
e.g 以salseforce 为例,对于它的产品周期:
1. 最早提出SaaS的模式,这是一种全新的商业模式;
2. 后来以CRM 为突破口,建立了一个完整的以客户为中心的,售前(营销)、售中(销售、履约)、售后(客服)全链路的软件服务,可以看出他的产品就是围绕商业模式展开,战略就是围绕客户开展的一系列工作流程。
3. 到现在云计算, 促使他产生了几朵云,营销云, 销售云,客服云,而大数据又促使ta产生了 分析云,AI 又产生了AI 客户之类的服务;
每个人在离开学校,踏入社**的大门开始,都**经历很多个成长周期。在传统行业的产品管理中,有产品生命周期的一套理念,套用到职业生涯,应该也是可以的。
对应上面的四张图,我周边很多朋友在毕业没多久就如第一个图的呈现,起点高,偶尔有起伏,站的总归一直在高处。回看我自己的职业生涯,觉得应该比较贴切右边最后一张,职场进阶的道路上虽然曲曲折折,但是总**在一个小周期之后能得到突破。
不得不说,初入职场的前几年,特别沉迷于数据本身而不是业务,以及对各种数据处理技巧的深层次研究,用VBA、R、SPSS、Python不同的软件去自研各种自动化的小工具,小有成就。
工具毕竟只是工具,就跟打游戏开荒一样,当每个模块、功能都尝试用过一遍之后,就丧失了兴趣,数据分析不过如此,几年之后就索然无味了,分析无用。当对一件事情失去了兴趣和焦点,整个人就**变得很浮躁,傲慢、漫不经心、焦躁、忧虑……以及冲动,我想辞职!
庆幸的是,碰到了一些比好的领导,都是人生中的引路人,在状态极其不好的时候,给予方向上的指导,给了很多选择。
有一阵子,内心浮躁,无所事事。领导说有机**就跟着市场、营销、工程的同事去接触接触业务,如果可行,以后转型也方便。后面就跟着事业部的业务同学去拜访客户,到用户现场参观,了解产品是如何在用户公司使用的,到一线听他们的吐槽(大部分是骂声)。人间清醒是客户,付了钱,产品哪里好用、哪里有问题,意见反馈、客服电话打了一通又一通,这些都是从结构化的数据里面看不出来的。
有种说法是说客服才是一家公司最懂业务的人,只要他们想,随时可以去挑战任何一个产品、技术和业务!
在B端用户分析里面,很多时候通过数据分析在异常上找不到的原因,在用户现场指不定就茅塞顿开了。为什么这个用户原来很活跃,一个时间点之后,它就不活跃了,因为它的业务主体发生变更了,老板原来的确是做这个细分板块业务的,有一天他朋友来合伙投资,整体业务方向就变了;为什么这个用户的营业额突然就下降了,因为他们家老板又开了家子公司,还是同一拨人,当地有小企业扶持政策,还可以免一部分税;……这些部分都离不开对细分行业的了解,随着业务知识的增加,**更合理的看待数据,以及对数据中对异常做解释。
鉴于对产品、业务、用户有了更深层次的理解,再回过头来看数据,认知面就**不太一样。
熟悉业务最好的方式,是直接去找用户进行面对面的对话,高效而简洁;
其次是角色代入式的按照用户视角去模拟用户在产品上的操作,熟悉产品模块和流程;
最次是通过数据库的表结构关系、DDL,去做业务假象,通过日常需求对接,丰富业务上的知识树。
了解C端的用户可以通过区域化的抽样问卷调查,或者通过采买第三方平台所提供的画像数据,能够用样本分析的方法去对人群标签做特征拟合。但是在B端,问卷调查的方式往往是行不通的,毕竟不同性质的企业,在群体特性的差异上是极大的。用户走访,是一个在B端不得不去做的事情,选择一群合适的访谈对象,去和用户做共创、做MPV、做试点,然后把研究的结果在更大范围内进行复制、应用,避免闭门造车。
前面已经提到过,对于企业用户,其看重的是“生意”,功能诉求为主,普遍有丰富的生意经验和复杂的业务流程,因此调研不仅要了解用户使用网上产品的诉求、意见,更需要还原用户原生行为(即线下做生意的行为,链路等)、诉求,据此对应投射到互联网产品。
因为B端的业务决策链路长,且参与角色多,所以不同的人所掌握的信息和权力都有非常大的区别,即使是同一个岗位,不同级别、不同业务分工,所负责内容,关注点的不同。比如在市场营销部门里面,总经理、总监、经理、主管,四个角色在同一事情上的视角和焦点都**不一样;而在零售类型的企业,负责电商、线下渠道、直播渠道为了一个决策所需要的信息也**大不相同。
过往面试的时候,面试官问最有成就感的事情是什么,我的回答“通过数据分析、挖掘去促成了2亿市场规模的合同达成(专项项目组)”;“面向B端公司进行定制化的数据报告实现5000万左右的数据营收(报告营收)”……我觉得这是比较感觉到自豪的。
回过头看这些年的经历,感慨万千,在过去这十年的工作经验里面,一直都是在数据分析这个title上。很想把这些年积累的一些知识内容以文字的形式记录下来,对于一个纯理科生来说,这无疑是一种挑战。后面应该**拆成很多个部分,缝缝补补,陆陆续续的完善。
作者:郑小柒是西索啊,微信公众号:郑小柒是西索啊
本文由 @郑小柒是西索啊 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议