时间: 2021-07-30 10:48:32 人气: 10 评论: 0
编辑导语:在互联网时代,大数据与各行各业的结合给人类带来如此广泛而深刻的变革,就像“巧妇难为无米之炊”一样,没有数据就没有了一切。本文作者从互联网行业特性、互联网行业常见的数据指标、数据分析概述、数据分析入门、数据分析基本流程、数据分析进阶、数据分析存在的挑战以及发展前景等7个方面进行梳理总结,为我们分享了基于互联网行业背景下的数据分析通识。
在互联网行业中,用户在互联网上的行为“数据”都**被记录。
此时,就需要进行“数据分析”并利用技术手段从海量用户行为数据中挖掘出有价值的信息,分析用户的生命周期以及用户行为路径,建立数据指标体系以及监控体系和用户模型,进行用户分层,针对性提供产品和个性化的服务,实现精准营销,以此来提高业务增长,提升用户体验,打造引流的闭环等。
因此,“数据分析”在互联网行业具有重要意义。但“数据分析”更多在互联网行业却是属于通用技能,也可以说更像是一个底层的能力,不管你是做产品、运营、商务、市场、人力,还是技术开发、项目、管理,基本上都要掌握“数据分析”技能。
因为绝大多数的数据分析相对来说都是比较常见的业务分析的工作,同时因为成本管控的原因,一般的业务线就不**再设立专门的数据分析岗位,这都需要自己做分析的工作了。
因此,我们将从互联网行业特性、互联网行业常见的数据指标、数据分析概述、数据分析入门、数据分析基本流程、数据分析进阶、数据分析存在的挑战以及发展前景等7个方面进行梳理总结,来全面了解一下基于互联网行业背景下的数据分析通识。
与传统行业相比,互联网行业有几个不一样的特点:
总之,互联网行业让整个人类社**的发展都进入了一种飞速的进化状态,公司的生命周期变得很急促,优势竞争地位**迅速放大,树立牢不可破的门槛;行业颠覆也变得很快。
然而,在如此快速的互联网发展的道路上,以及在5G和大数据的背景下,为了更好地应对不断的变化,数据分析技能无疑是未来职场人的必备技能 ,通过数据分析做到组织精细化,增加竞争优势等!
不同的互联网行业关注不同的运营数据,细化来看,复杂的互联网产品关注的运营指标成百上千。但是有一些指标是我们最常用的,这些指标基本反映了业务线的运营的核心状态!
我们以App的指标为例,来看一下梳理一下互联网行业常见的数据指标。
活跃用户指标有的公司定义启动过APP的用户就算活跃,有的定义必须登录账户才算活跃。活跃用户指标可以按照时间跨度不同分为、周、月来统计,是衡量APP用户规模的指标。
一个产品是否成功,如果只看一个指标,那么这个指标一定是活跃用户数。如新闻APP、音乐APP、社交APP等大多数希望用户每天都打开的应用,其产品的北极星指标均为日活跃用户数。
新增用户指标也可以按照时间跨度不同分为、周、月来统计,且主要是衡量营销推广渠道效果的最基础指标;转化率则是反映渠道推广落地页或者注册流程的流畅度;而新用户占比活跃用户过高,那说明该APP的活跃是靠推广得来。
这种情况非常值得关注,尤其是关注用户的留存率情况。
留存指标也是验证APP对用户吸引力很重要的指标。
通常可以利用用户留存率与竞品进行对比,衡量APP对用户的吸引力。对于某一个相对成熟版本的应用,如果用户留存率有明显变化,则说明用户质量有明显变化,很可能是因为推广渠道质量的变化所引起的。
使用时长相关指标也是衡量产品活跃度、产品质量的重要指标。目前APP种类翻多,用户精力分散,每天的时间是有限,比如现在很流行的短视频APP,主要指标就要看时长指标了。
用户构成指标是对已注册用户的构成进行分析,有助于通过新老用户结构了解活跃用户健康度。每个公司对重要、回流、流失用户的定义不一样的,我们可以根据产品业务需要,制定回流、流失预警,来对用户健康度进行监控。
渠道指标是评估渠道投放的质量,再结合产品自身特点、产品受众群体以及渠道自身特点做出全面细致的评估,并根据数据情况筛选优质渠道进行投放。
收入指标是用来衡量整体app收入状况,以及盈利情况,为后续业务目标制定起到参考的作用。
日常秒杀、双十一、618等大促活动:新增访客、新增注册、总UV、成交订单数、转化率、ROI········
以上是一些具有普适性的互联网运营数据指标,虽然不同的业务关注的指标不一样。总之, 数据指标很多,但是在互联网中这些数据指标基本上都是大同小异的,对于新增、活跃、留存、复购、用户分层、活动复**、渠道优化等等的分析也基本上各个互联网业务线中都**有。
上面列出的各指标,可能不是那么全面,这里就不一一展开了,好的数据指标,更应该为产品业务线所在的发展阶段提供指引。因此,实际工作中要以本身业务目标制定属于自己关注指标的为准。
数据分析,即是基于某个目的对数据进行分析和总结概括的过程。它的意义在于把隐藏在数据中的信息萃取和提炼出来,以便帮助人们找到所研究对象的内在规律,或者事物的发生、发展和未来变化的规律,进而帮助人们做出判断以及正确的决策。
现在领域内有很多数据分析岗。BI(Business Intelligent)、DA(Data Analysis)、数据运营、数据科学家、数据产品经理等,工作内容可以说是大相径同,细分领域的专业度**存在不同程度的差异。
如今,“数据分析”可以说是有关“数据”类岗位的总称了,而数据分析技能基本是互联网里的标配了。从事这些工作的人,通过分析数据发现业务问题,洞察商业机**点,为运营活动、业务增长及企业发展提供合理建议及参考依据。
然而,数据分析具体都做哪些工作呢?这里先简单梳理介绍一下理想中和实际中,数据分析的典型场景!
业务最近遇到了困难(例如某投放渠道与预计效果相差更多),但今年和往年的投放策略没啥变化呀,为啥效果这么差?这是我们就需要分析一下今年该渠道业绩不达预期的原因。
然后,数据分析人员经过一顿操作猛如虎,做出了精美的PPT报告,在大boss面前一顿指点江山,最终收获了老板的认同。通过数据分析,看趋势,对比,查异常,做用户分群等一系列的操作,同时给出了运营建议,业务按照建议修改了投放策略,果然效果十分明显,业绩飙升。
正所谓:理想很丰满,现实很骨感。然而实际工作中又是如何呢?
业务最近遇到了困难,我们需要分析一个渠道效果差的原因。我们需要进行数据分析,先是用尽了毕生力气准备好了各种数据。然后进行了各种维度下**分析原因,然而,也没找到异常。最终给老板做的PPT,也被业务频频吐槽,说没有业务价值。
从上面的例子中,其实比较容易理解,数据分析的主要职责了吧?
其实,数据分析的出发点首先要带着业务的问题或者疑惑,然后凭借较强的数据敏感度,再通过各种**的分析方法,来描述数据的异常状态、根据数据和指标体系、寻求原因、来评估可能的影响、来探索可能的数据(用户)增长策略。
现在,我们从业务角度出发在来看一下,做数据分析的具体操作场景是怎么样的:
总结下来,其实就是:利用数据分析技术方法及手段,总结业务现象、分析业务状况,通过一些可视化的手段展示处理,并撰写分析报告或者报表,为业务的增长提供可落地执行的指导以及建议。简单来说就是:所有数据分析,都绕不开是多少、是什么、为什么、**怎样、又如何。
由于篇幅的原因,我们将拆分来梳理,后面继续从数据分析入门、数据分析基本流程、数据分析进阶、数据分析存在的挑战以及发展前景等方面进行详细梳理总结,敬请期待!
木兮擎天@,微信公众号:木木自由,人人都是产品经理专栏作家。多年互联网数据运营经验,涉猎运营领域较广,关注于运营、数据分析的实战案例与经验以及方法论的总结,探索运营与数据的神奇奥秘!
本文原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议