时间: 2021-07-30 10:58:14 人气: 7 评论: 0
文章从几个方面简要分析了数据可视化,希望能够帮助你对数据可视化有一个整体的认识。
数据可视化是指将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。通过观察数字、统计数据加以转换获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理,因此使用图表、图形和设计元素把数据进行可视化,可以帮你更容易的解释数据模式、趋势、统计规律和数据相关性,而这些内容在其他呈现方式下可能难以被发现。可视化可简明地定义为:通过可视表达增强人们完成某些任务的效率。
任何形式的数据可视化都**由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖而有趣、充实而高效、美感且悦目三个特征。
下面分别从数据可视化的价值、什么是好的可视化、数据可视化难在哪里、可视化过程中的注意事项、单个图表的构建过程几个方面聊聊数据可视化。
数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。并且利用合适的图表直截了当且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。
图形表现数据,实际上比传统的统计分析法更加精确和有启发性。我们可以借助可视化的图表寻找数据规律、分析推理、预测未来趋势。另外,利用可视化技术可以实时监控业务运行状况,更加阳光透明,及时发现问题第一时间做出应对。例如天猫的双11数据大屏实况直播,可视化大屏展示大数据平台的资源利用、任务成功率、实时数据量等。
数据可视化能做到简单、充实、高效、兼具美感就是好的可视化:
简单点说好的数据可视化和好的产品是一样,都有友好的用户体验,不能让人花了时间又看得一头雾水,甚至被误导得出错误的结论。准确,用最简单的方式传递最准确的信息,节约人们思考的时间。 最简单方式就是最合理的图表,需要根据比较关系、数据维数、数据多少选择。
充实一份数据分析报告或者解释清楚一个问题,很少是单一一个的图表能够完成的,都需要多个指标或者同一指标的不同维度相互配合佐证分析结论。
高效成功的可视化,虽表面简单却富含深意,可以让观察者一眼就能洞察事实并产生新的理解,管理者能够沿着你规划的可视化路径能够迅速地找到和发现决策之道。
美感除了准确、充实高效外,也需要美观。 美观分为两个层次,第一层是整体协调美,没有多余元素,图表中的坐标轴、形状、线条、字体、标签、标题排版等元素是经过合理安排的 ,UI设计中的四大原则(对比、重复、对齐、亲密性) 同样适用于图表。 第二层才是让人愉悦的视觉美,色彩应用恰到好处。把握好视觉元素中色彩的运用,使图形变得更加生动、有趣,信息表达得更加准确和直观。色彩可以帮助人们对信息进行深入分类、强调或淡化,生动而有趣的可视化作品的表现形式,常常给受众带来视觉效果上的享受。协调美是视觉美的基础。
好的产品体验不是一件容易的事情,是专业产品经理、UE、UI完美配合的产物,同样做好数据可视化也不容易,需要具备一定的数据分析能力、熟练使用可视化工具、较好的美术素养、良好的用户体验感觉,还能够换位到受众角度审视自己的作品,光有**远远不够,还需要大量的实践磨炼,把**固化成自己的感觉。
数据不准确、结论不是很清晰,所以数据可视化的最大难点在数据可视化之外的基础性工作,数据收集、数据分析没有做好,可视化就是徒劳无功。
数据可视化是用高度抽象的图表展示复杂的数据、信息,需要逻辑及其严密
维度多、变量多,不确定应该展示哪些信息 数据过多,需要采用交互式的展现可视化, 例如,可以充分利用地域的分级包含关系展示不同地域层次的图表。
和UI图形界面相比,图表只有有限的文字、图形指引,不能很好的说明数据的上下文关系。
图表高度抽象,对于阅读者素质要求很高,阅读者也需要了解各类图表所传递的对比关系、异同等基础知识。
选择正确的图表不容易,各类图表都有自己的优势和局限性,光柱状图就有一般柱状图、分组柱状图、堆积柱状图、横线柱状图、双向柱状图等。
图表细节处见真功夫,图表需要考虑细节实在是太多,布局、元素、刻度、单位、图例等等都需要合理。 细节处理不到位,影响可视化的效果,例如:折线太细不便于观察线太粗又抹平了趋势细节; 更严重问题可能误导受众, 例如:刻度选取不合理折线过于陡峭 。
总结几点注意事项,少走些弯路:
数据产品的表现层可算作是大型的数据可视化项目,是产品设计方法和可视化方法的结合,分别掌握的产品设计方法和可视化方法然后综合运用不是什么难事,这里只说说单个图表的构建过程。
End.
来源:http://www.36dsj.com/archives/95801
本文来源于人人都是产品经理合作媒体@36大数据
题图来自Pixabay,基于CC0协议