时间: 2021-07-30 10:58:27 人气: 28 评论: 0
文章对常见的数据可视化图表进行了简单的汇总分析,希望对你有益。
数据可视化,简简单单就是把数据展示出来吗?非也非也,其终极是为了满足用户对数据的价值期望,利用数据,借助可视化工具,还原和探索数据隐藏价值,描述数据世界。
(⊙o⊙)…还是说人话吧,就是以下两步。
你难道不欣赏折线图那婀娜多姿的曲线?柱状图那美丽的大长腿?
好吧~ 其实是老板说要做的!
优点:人眼对高度较敏感,直观各组数据差异性,强调个体与个体之间的比较
缺点:不适合大量的数据集数据(项数较多)
适用场景:一个维度数据比较、数据单纯性展示、排序数据展示
适用数据: 数据集不大, 二维数据
优点: 直观显示各项占总体的占比,分布情况,强调整个与个体间的比较。
缺点:数据不精细,不适合分类较多的情况
适用场景:一个维度各项指标(一般不**过5个项目)占总体的占比情况,分布情况。(例如:不同状态下的车辆分布,公司内各个团队营收收入)
适用数据:具有整体意义的各项相同数据
折线图分为 直线折线图和曲线折线图,直线折线图一般适用于离散变量,曲线折线图一般适用于连续变量。
优点: 直观反映数据变化趋势
缺点:数据集太小时显示不直观
适用场景:需要反映变化趋势,关联性。
适用数据:时间序列类数据、关联类数据(如电流跟随电压变化而变化)
优点: 直观反映数据集中情况,对离散数据线性回归等曲线预测性的拟合辅助作用
缺点:适用场景比较少
适用场景:两个维度比较(地图某地区某项数据集中分布),对离散数据进行预测时
适用数据:离散值数据
在做数据分析和运营图表时,基础的报表可能满足不了用户对图表的要求,故有一些数据分析类常用的图,以下我列举一部分,剩下的图表,大家可以根据业务需求,在echars官网上进行搜寻。
以上图表均来自echars
T1 为优先选择项,T2位次选项
在更多的实际情况,我们需要结合某两种图或者某三种图。能让用户能再最短时间内了解到数据所带来的信息,能用一个图,为啥要用三个图呢?
例如,比较 + 趋势 + 占比
设计图表前要充分理解数据展示的目的,如(比较功能、趋势功能等),按照总结表格,自由组合吧!!当然,我们需要考虑组合的可行性,不是所有的图表都是可以进行组合的。
再强调一遍,从需求和目标出发,设计图表的展示,数据实用性为主。
以上就是个人的分享,如有更好的意见或者建议,欢迎留言交流。
作者:敖学军,初级数据产品经理,主要负责平台型大数据产品的设计,专注于数据产品。
本文由 @敖学军 原创发布于人人都是产品经理。未经许可,禁止转载。