时间: 2021-08-03 08:50:28 人气: 4 评论: 0
编辑导读:自从阿里提出中台概念后,各行各业不断推出了中台的应用与落实,着手数据中台的建设。但是,数据中台目前还没有一个统一的定义,对于数据中台是什么、有什么价值、怎么建设,各行各业仍需结合实践去探索。
那如果企业想要做数据项目,想要构建数据中台,该怎么开始呢?本文作者对此展开了分析探讨,一起来看看~
最近数据中台很火,接触的很多企业都在提这个东西。然而,很多连数据基础都没有、仍然处在数据孤岛阶段的企业,上来就说我今年要做数据中台项目,这实际上是因为大家都在追热点,而没有真正搞明白这个名词的含义。
那么,数据中台到底是什么?它和数据仓库、大数据平台又有什么区别呢?
首先,国内的数据中台兴起,大多是因为阿里巴巴的马老师提出的”大中台、小前台”的口号。所以,我们先来看看阿里对数据中台的定义。
数据中台是指通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。数据中台把数据统一之后,**形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。
这些服务跟企业的业务有较强的关联性,是这个企业独有的且能复用的,它是企业业务和数据的沉淀,其不仅能降低重复建设、减少**囱式协作的成本,也是差异化竞争优势所在。
广义的数据中台包括了数据技术,比如对海量数据进行采集、计算、存储、加工的一系列技术集合,今天谈到的数据中台包括数据模型,算法服务,数据产品,数据管理等等,和企业的业务有较强的关联性,是企业独有的且能复用的,比如企业自建的2000个基础模型,300个融合模型,5万个标签。它是企业业务和数据的沉淀,其不仅能降低重复建设,减少**囱式协作的成本,也是差异化竞争优势所在。
浙江移动已经将2000个基础模型作为所有数据服务开发的基础,这些基础模型做到了“书同文,车同轨”,无论应用的数据模型有多复杂,总是能溯源到2000张基础表,这奠定了数据核对和认知的基础,最大程度的避免了“重复数据抽取和维护带来的成本浪费。
曾经企业的数据抽取就有多份,报表一份,数据仓库一份,地市集市一份,无论是抽取压力、维护难度及数据一致性要求都很高。同时,统一的基础模型将相关业务领域的数据做了很好的汇聚,解决了数据互通的诉求,这点的意义巨大,谁都知道数据1+1>2的意思。
在企业内,无论是专题、报表或取数,当前基本是**囱式数据生产模式或者是项目制建设方式,无法形成标准化统一业务模型,无法沉淀和共享也就无法迭代生长,从而造成模型不能真正成为可重用的组件,无法支撑数据分析的快速响应和创新。
只有在迭代生长中的业务模型才能从最初的单一字段,逐渐完善形成为企业最为宝贵的统一模型资产和统一数据资产。
以报表为例:
企业报表成千上万的原因往往也是没有沉淀造成的,针对一个业务报表,由于不同的业务人员提出的角度不同,**幻化出成百上千的报表。
如果有报表中台的概念,就可以提出一些基准报表的原则,比如一个业务一张报表,已经有的业务报表只允许修改而不允许新增,自然老报表就**由于新的需求而不断完善,从而能演化成企业的基础报表目录。否则就是一堆报表的堆砌,后续的数据一致性问题层出不穷,管理成本急剧增加,人力投入越来越多,这样的事情在每个企业都在发生。
我们都知道,以往的业务决策,大多是凭经验拍脑袋的,现如今,数据的价值和重要性不言而喻。企业的管理者在做决策时,越来越想要先看数据。所以,好的数据基础,是决策和创新的加速器。
而现在市场竞争如此激烈的大环境,不但需要企业做出正确的决策,效率和执行力也是关乎存亡的,数据中台即是数据创新效率的保障。
研究过机器学习的都知道,没有好的规整数据,数据准备的过程极其冗长,这也是数据仓库模型的一个核心价值所在,比如运营商中要获取3个月的ARPU数据,如果没有融合模型的支撑,得自己从账单一层层汇总及关联,速度可想而知。
在如今的互联网时代,企业都在全力谋求转型,转型的关键是要具备跟互联网公司一样的快速创新能力,大数据是其中一个核心驱动力,但拥有大数据还是不够的,数据中台的能力往往最终决定速度,拥有速度意味着试错成本很低,意味着可以再来一次。
原来新员工入职要获得成长,一是靠人带,二是找人问,三是自己登陆各种系统去看源代码、了解各系统底层数据结构,这样的学习比较支离破碎,其实很难了解全貌,无法知道什么东西对于企业是最重要的,获得的文档资料也往往也是过了时的。
现在有了数据中台,很多成长问题就能解决,有了基础模型,新人可以系统的学习企业有哪些基本数据能力,O域数据的增加更是让其有更广阔的视野,有了融合模型,新人可以知道有哪些主题域,从主题域切入去全局的理解公司的业务概念,有了标签库,新人可以获得前人的所有智慧结晶,有了数据管理平台,新人能清晰的追溯数据、标签和应用的来龙去脉,所有的知识都是在线的,最新的,意味着新人的高起点。
更为关键的是,数据中台让新人摆脱了在起步阶段对于导师的过渡依赖,能快速的融入团队,在前人的基础上进行创新。数据中台天然的统一,集成的特性,有可能让新人打破点线的束缚,快速构筑起自己的知识体系,成为企业数据领域的专家。
认可了数据中台的价值,我们自然是想要去快速搭建,然后真正去规划建设的时候,我们**发现,数据中台的建设和数据仓库、大数据平台是有重合的,这就需要我们充分理解三者的区别。
综上,我们**发现,数据中台是在数据仓库和大数据平台的基础上,将数据生产为为一个个数据 API 服务,以更高效的方式提供给业务,本质是一个构建在数据仓库之上的跨业务主题的业务系统。
所以,我们**发现,不论要做哪一个数据项目,数据才是核心,统一数据仓库、主数据是基础。只有打通各业务系统的数据孤岛,将数据标准、口径、模型、存储统一,形成具备完整性、规范性、一致性、准确性和及时性的高质量数据,才能逐渐释放数据价值。
以下这张图很好的展示了这三者的发展关系
数据中台可以说是几十年来企业数据管理发展的产物,是聚合和治理跨域数据,将数据抽象封装成服务,提供给前台以业务价值的逻辑概念。
从阿里数据平台的更迭历史中也不难看出,在经历了传统数据库时代到大数据平台再到数据中台,数据中台绝不是一蹴而就,其建设需要有一定的底子!
无论是数据中台也好,数据仓库也好,还是数据平台,最终都是为了让数据的价值更好的作用于业务、经营和管理上。
这三种方案都具有一定的适用性,需要结合企业不同的发展阶段来判断,具体:信息化水平,数据体量、业务性质、还有数据成熟度等。
如何应用数据?这里结合帆软14年来为**万家企业提供的大大小小的数据应用解决方案,给出个人的一些想法。大致分为几个阶段:
(数据资产不等同于数据,数据资产是唯一的,能为业务产生价值的数据)
在我们将数据自动化、可视化的呈现出来的过程中,我们能够充分释放数据的信度、效度、准确度方面的价值。这也是为什么越来越多的传统企业在进行数据项目规划时,通常**先做一个叫做”管理驾驶舱”的东西。
其本质就是,通过上层呈现所要保证的一致性和规范性,倒逼下层的数据管理、数据治理,从而逐渐开展数据分析辅助决策、数据驱动业务等。数据可以告诉决策者一些潜在的规律,以数据来证明或判断决策。
帆软基于企业经营构建的数据管理体系
很多时候,即便数据质量非常完备了,但因为依赖于统计学的数据分析只能对历史的、以往发生过的事情做解释,所以往往总是**慢半拍。而数据挖掘、机器学习,这些近几年才流行起来的技术,可以充分利用海量的数据,通过算法模型去挖掘数据背后的规律,从而辅助我们提前预测或者个性化推荐。
以往我们只**用数据来证明我们历史的决策对错,现在我们用数据来引导我们做出对的决策。基于数据资产催生的人工智能,将数据进行再融合形成新的数据,源源不断给我们提供新的业务视角,让我们不断创新、不停去尝试。
当我们逐渐依赖数据机器人的指令,形成数据服务思维和习惯,让业务与数据形成循环活起来,让它成为业务的一部分,同时让机器智能成为决策环节,运营就可以智能化,即智能化的数字业务系统。
最后,想必对于各种企业要做数据项目,想要构建数据中台,我们可以形成一个优先级顺序。
作者:miao君,专注企业数据化运营和数字化转型,公众号:商业智能研究,分享有关企业数据建设的一切知识!
本文由 @miao君 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。