人工智能范式转移与传统职业的消失


时间: 2021-08-03 10:06:38 人气: 16 评论: 0

容易被取代的职业是哪些只有“硬技能”的职业,重复劳动、可预见、有明确流程和方法论的工作,而“软实力”,比如对事物之间的关联性有深入理解的,感性的,则处于相对安全的范围。但,未来不**有永久的安全区域。

1899年,爱迪生听福特介绍完汽车之后表示:马的末日已经来临。不过汽车在大街上畅通无阻奔驰之前,还是遇到了很大的阻力。当时乘坐马车的人不喜欢汽车,马车夫和马车铺老板更是恨透了汽车。在英国甚至有一个交通法规叫“红旗法”(1858-1896年),蒸汽汽车市内限速2英里/小时以下,郊外限速4英里/小时以下。旧金山也曾规定汽车在市内行驶的速度不能**过8英里/小时。对汽车的歧视不仅包括汽车不能**过马车速度,还有马车与汽车相遇时,汽车要停车为马车让路,马车夫甚至可以要求汽车司机发动机熄火,让马车安静通过。

但不管什么法令,汽车最终还是取代了马车,成为20世纪以来人类最主要的交通工具之一。人工智能对未来各种职业变化产生的影响,只**更加彻底。人工智能代表了更高的生产力,不管行业工**和政策如何压制,最终它还是**胜出。

那么,如何看待人工智能近期的加速?人工智能的变化对哪类职业**产生影响?

一、机器学习范式的转变

人工智能之所以变热、加速,很重要的原因是机器学习取得了重大的突破,而这个突破在于思考问题方式的转变。比如深度学习不再试图对整个世界建模,而是对大脑进行建模。范式的转移带来全新的突破。这加速了生产力的提升,加速了职业的变化,有的职业将消失,甚至绝大多数目前的职业都将消失,而新的职业将诞生。

从1956年提出人工智能概念到2016年,刚好60年,人工智能走到突破点上。人工智能的三驾马车:算法、算力和数据。算法有了很大的进步,深度学习技术可以大量处理未标记非结构化的数据,可以无监督训练及有监督的反向支持运算等;算力方面,GPU的大发展为人工智能的计算速度提供了基础支持。而数据是所有人工智能之源。所有的决策,所有的行为,最终归结为数据。

从具体的发展来看,目前语音识别、图像识别、自然语言处理、自动驾驶都有了实实在在的长足进步。

首先图像识别正确率的提高,图像识别的错误率减少到了7%,语音识别错误率减少到4%。图像识别相当机器的眼睛,它通过图像识别能够看到世界。在人工智能基准测试Imagenet上,微软、谷歌和百度都曾经取得过5%以内的识别错误率,这是一个很了不起的成绩,因为人眼识别的错误率大概为5.1%。其次,语音识别率大大幅提高。在国内百度、搜狗和科大讯飞对外公布语音识别准确率均达到97%。

更重要的是机器学习的方法让它变得越来越犀利。之前人工智能靠的是穷举法。比如图像识别要靠通过设立规则开发系统来识别物体,比如猫、狗等动物。自然语言处理则需要通过语言学家们把语法规则编写出来,并设计程序开发来完成。机器学习则换一个模式解决这个问题。把规则问题转换为数据问题。比如说,让要机器学习“猫”,传统的方式把识别的规则写出来。而机器学习则让自己去学习:从一定数量的标记为“猫”的图**和没有标记为“猫”的图**中,让神经网络去把“猫”找出来。之前由于算力和数据没有办法解决学习问题,但今天,这都不是问题。

数据对规则形成了碾压。甚至人工智能学家宣称:“每解雇一名语言学家,语音识别机器的表现就提高了一点。” 由于这是一个通用的方法论,这样机器学习就可应用到所有数据的领域,比如金融科技,通过机器学习找到高风险人群的特征。

 二、机器学习范式转移加剧对传统职业的冲击

机器学习,尤其是深度学习的快速发展让很多工作面临被取代的局面,这个进程还在加快。更可怕的是,未来人工智能将在数据分析上比人类更聪明。这也意味着人类不仅仅在一些机械的工作上被取代,甚至一些复杂的计算工作也**被取代。

容易被取代的工作包括纯机械体力劳动、有明确方法论和逻辑及流程的职业。难以被取代的工作,主要是关于人的体验、感性、暂时没有明确方法论和流程可以解决的行业和职业。比如创意娱乐艺术类。

未来可能今天的绝大多数职业都要消失,这里也没有办法穷举。目前看来显而易见的一些行业和职业很快就要受到冲击。

1.翻译

谷歌神经网络翻译(Neural Machine Translation)从2014年开始,仅仅两年的时间,就发生了翻天覆地的变化,英语和法语,英语和西班牙的互译质量达到了90%以上。百度翻译采用的则是深度学习和统计结合的翻译系统,同时还加收入了语言处理、语音交互的场景,目前支持**过28种语言互译。微软也曾发布微软翻译(Microsoft Translator),实现9中语言实时语音转文本的翻译。

像谷歌和百度等采用神经网络翻译系统之后,能够让翻译不仅仅是按字句进行,而是可以根据一篇文章大意对文章进行分析,极大降低了错误率。

目前谷歌翻译、百度翻译还不够完美,但是每年都在进步,估计过了五年十年,比普通人类翻译做得还好。

为什么?因为这是机器学习范式转变带来的变化。机器翻译实现了从统计式的翻译转向了神经网络翻译。也就是从统计,从穷举,从规则转向了机器学习。机器学习的方法意味着翻译的效果**越来越好。这才是从事翻译工作的人们需要担心的问题。

2.记者

大多数记者写稿的工作也可能被取代。比如美联社有90%的文章采用机器写手的文章。**也开发了机器人写作新闻稿,按照算法在最快时间生成稿件,瞬时将重要资讯和解读发布给用户。

目前看,机器人写稿,一般来说,可以做一些消息类稿件,比如刚才提到的美联社新闻稿,**的新闻稿。对于大多数只是发布新闻消息的记者来说,这个职业很快就面临被淘汰的局面。这符合刚才提到的不仅仅是机械性的体力劳动,机械性的脑力劳动岗位也**被替代。大多数记者的写稿行为,本质是都是机械性的脑力劳动。基于机器学习的写稿行为,它**比人类更快,且随着给予的数据喂养更多,**比普通人类记者写得更加出色。

目前看只有对于事件的深度解读和分析,暂时还是人类的优势领域。

3.司机

人类历史上,曾经强壮的男人最受欢迎。在原始的部落,强壮男人狩猎、保护族人免受外族欺凌,在原始社**、部落社**、农业社**,甚至在工业社**都是最受欢迎的职场人士。但是今天,强健的体魄面临来自不知疲倦更加强壮的机器人的冲击。

重复性体力劳动的重要性一直降低,而且被取代也是迟早的事情。比如无人驾驶作为人工智能最大的应用。它对司机这个职业产生根本性的威胁。不仅是Uber和滴滴这样的出行应用公司,而且特斯拉、百度、谷歌也在大力发展无人驾驶汽车。无人驾驶汽车的应用几乎涉及到了所有人工智能的方面,比如图像识别、语音识别、自然语言处理等。对于Uber和滴滴来说,要想继续向上走,必须让无人驾驶成为优化整个交通出行的核心,最终让出行体验做到极致。

而对于特斯拉、百度和谷歌这样的企业来说,重要的不仅仅是无人驾驶的硬件或者无人驾驶的软件能力。核心的还是前面提到的理念,这些企业的无人驾驶汽车是建立在“机器学习”基础上的。比如特斯拉已经收集了**过20多亿公里的车辆行驶数据,包括了不同路况和天气下的行驶数据,这些数据每天都在大规模增加。这些大数据通过学习的机制为其他所有的汽车赋予能力,也就是说这是一个怪兽。由分布在全球不同的地区的汽车个体不停地上传不同的数据,而这些数据又回报给各个个体,最终进化成为一个更加高效有用的自动驾驶汽车。

百度和谷歌也有类似的思路,百度有一个输出人工智能大脑的战略,除了自行研发百度无人汽车之外,还跟不同的汽车厂商合作,输出汽车大脑的服务,对于百度和谷歌来说,这样的方式能够以更快的速度获得数据。对于这些企业来说,最快的速度获得数据永远是最高的战略。

虽然真正的无人驾驶可能还需要五年十年的时间,但是这个趋势已经不可逆转。未来的出租车司机、滴滴或许Uber的司机、大货车司机等都要面临职业消失的局面。美国有200万名大货车司机,即使有特朗普的保护,最终来说,生产力发展的趋势也不是不可逆。无人驾驶汽车比货车司机更安全、可靠、听话、不知疲倦且容易管理。

4.工厂工人

机器人取代工厂工人是必然,就像美国目前的农业人口占总人口的1%一样,未来工人也不****过总人口的1%,曾经马克思书里描述的社**中坚力量工人阶级将随着技术的变迁而消失。甚至马克思主义的赖以存在的资本主义矛盾论**基础也将消失,他所描述的资本主义经济的核心问题在于供需信息的不对称,传导太慢,导致了经济危机,而人工智能的数据匹配将彻底改变这一问题,这意味着是不是很多经济学家也要失业了?因为从高度不透明,不确定的社**经济逐渐走向有计划可预期的社**经济。这里唯一不确定的是人性。

三全之前有2万多名职工,用手工包汤圆和水饺,但现在以前几千吨的汤圆水饺都由机器人完成。日本软银的孙正义早已开始布局未来,软银公司一家有**过3000万机器人,24小时不眠不休地干活,一个机器人抵好几个普通工人,目前成本仅900元,而中国的劳动力工资至少也得3000元以上。人工智能的发展将**引发产业的转移,产业将不一定在人力成本低的发展中国家发展,而可能**回流到发达国家。

诸如此类的案例只**越来越多。可以问问自己,自己的职业是不是处在被人工智能取代的区域?

三、结语

容易被取代的职业是哪些只有“硬技能”的职业,重复劳动、可预见、有明确流程和方法论的工作,而“软实力”,比如对事物之间的关联性有深入理解的,感性的,则处于相对安全的范围。但,未来不**有永久的安全区域。

为了不那么容易被淘汰,应该怎么做?既然是不可逆转的趋势,首先了解它,然后接纳它,最后努力成为它的一部分。

怎么成为它的一部分?比如你是一位产品经理,有没有考虑过人工智能时代,作为产品经理的职业**不**不一样?是不是需要学**跟科学家沟通?比如你是传统的金融风控专家,如果机器学习应用到了金融科技,能够通过机器学习的方式更好地确定高风险人群的特征,那么,原来的经验是否还奏效?又比如是一位父母,如何进行教育?如何让自己的孩子在在未来二三十年的人工智能时代能够有机**参与?现有的教育理念可能都需要重新审视,要有个性化的教育,除了基础教育,更加重视发挥个人优势。理性思维强的人,要加大对物理和数学基础的学习,而感性思维强的人,发挥自己的创意、娱乐的等天赋。未来或许不再有中间道路,To be or not to be!(蓝狐笔记)

 

作者:蓝狐笔记,微信公众号:lanhubiji

本文由 @蓝狐笔记 原创发布于人人都是产品经理。未经许可,禁止转载。

给作者打赏,鼓励TA抓紧创作!
3人打赏
---蛙鱼源码WAYUYM.COM---专业提供网站模板,网站源码下载,教程培训,程序插件,网站素材等建站资源,主要收集各类精品源码资源,包含CMS程序模板、网站源码、游戏源码、APP源码等 ,所有资源都没有水印适合搬运,我们致力于打造一个优秀的建站资源共享学习平台!

专业厂家,设备先进,技术力量雄厚,自动化生产技术先进,产品质量符合国家标准,价格合理,https://www.69shenlan.com/,具有质量保证,生产及时,交货快捷的特点。 我们的宗旨:做我们擅长的事,希望用我们的创意和创意为客户实现战略定位,塑造品牌,强化形象!
我们的要求:坚持“优质产品、优质服务、优惠价格、快速交货”的经营方针,努力开拓市场,真诚为客户服务! 我们的发展:以独特的专业和专业精神,https://www.69shenlan.com/1:1--

人工智能

评论