如何使你手里的数据变成现金?


时间: 2021-08-03 11:15:41 人气: 11 评论: 0

最近数据挖掘与分析讨论比较热的话题是“数据变现”,也就是所谓的数据挖掘在业务中进行了应用,并确实给业务带来更大的业务绩效收益。很多朋友都知道,有技术、熟悉业务是前提,但有了前提,也常常困惑于各种迷惑,数据到底被业务用了么,业务用了效果不好的话,问题出在哪里?

本文打算通过一些经验之谈,阐述“数据变现”基本准则(个人推荐),希望抛**引玉,能引起更多人思考、讨论。

数据变现前提准备

数据变现首先得有清洗、整理、及时、准确的数据,以及科学的数据分析方法和手段;然后得有业务的熟悉程度,包括业务流程、业务运作方法和运营难点、业务解决方案等等。有了前提,再说如何把数据变现为价值。

数据的准备、分析方法自不用多说,大家已经讨论N多遍了。这里主要讨论对业务的熟悉程度,我们常常提到的业务熟悉,往往只是停留在业务流程、业务数据流的熟悉。例如订单流程,数据流到某个状态才转ERP让物流拣货。直到现在,很多数据分析人还是认为这样的就叫熟悉业务了。

我曾经做过的大促分析,经过当天每小时流量、订单、库存,结合商品分布、用户分布,准确诊断大促不足的地方、大促高价值的地方,然后再一次促销中,将数据洞察转换为行动方案。这是因为我熟知业务部门要行动,他们需要了解到底哪些地方要如何改进,改进多少?例如商品部门,你说准备库存结构不合理,那你告诉我到底各SKU准备多少,为什么这样准备?客户部门,你说老客户活跃度激活不够,你告诉我如何做的更好,凭什么说这样才能更好?这些大家觉得仅仅熟悉流程,能给答案推动数据变现么?

充分地洞察和分析

数据要能说话,前提它要能成为说话的“证据”,例如销售增速同比下滑50%,你凭什么说是老客户维护是主要问题,而不是网站产品或者价格问题?

我个人以为这是一个数据分析、洞察融入业务逻辑的推理过程,写出来的分析报告逻辑严密,才能让业务部门信服、使用数据结论和建议。
上一个博文提到的:假设订单转换率由3%下降到1.5%,那么从业务角度,**有哪些可能性?

  • 1、导流出了问题,新的流量来源僵尸用户多?(用户访问习惯性行为判断)
  • 2、推广出了问题,很多用户误点广告(由退出率判断)?
  • 3、网站是否改版,降低了客户体验?(用户行为路径判断)?
  • 4、网站其他问题,例如某些功能比较难用,网站变慢等(用户行为访问节点分析判断)?
  • 5、是否商品突然没有了吸引力,例如商品之前还是大量5-6折的商品引流,现在变成8折为引流了?(通过商品访问深度、商品访问比较分析)

我们每一种可能,都要有“对应”的数据来说明,让业务部门关注或者不关注这个因素,而不是看来数据就算了。你说通过某广告来源来的流量,马上就退出的情况,这不是点错广告,是什么呢?这就是逻辑推理!

和业务充分沟通

这点很重要,也有挑战性,不同公司的企业文化,决定了你沟通的技巧需要有对应,所以你在某企业有沉淀,有人脉了,才更容易沟通,更容易交心。

根据原则,就是首先你的数据分析是来帮助他们的,而不是让他们帮你做数据试验;其次你的业务逻辑非常清晰,让业务觉得和你交流有共同语言,值得交流;最后你确实有成功案例,让业务有动力与你倾力合作。

推动数据驱动执行

交心的沟通后,业务部门甚至可能让你参与业务**议、请你帮忙提业务运作建议。但如果你还没与业务部门达成如此默契,就需要主动看执行结果,如果不够理想,请主动思考什么原因,与业务部门咨询是否有什么困难,缺乏什么条件。

总结

数据驱动失败,可能业务用户执行不到位,但也可能是数据分析漏了什么业务因素,或者数据挖掘算法不够合理,所以BI部门需要多审视自己,而且即便是业务执行不到位所致,请多关注对方是否有不得已的原因,而不是埋怨业务部门不给力,在未来合作中,数据才能更主动发挥价值。

作者:去哪儿网机票事业部 数据营销 高级经理 innovate511 

给作者打赏,鼓励TA抓紧创作!
---蛙鱼源码WAYUYM.COM---专业提供网站模板,网站源码下载,教程培训,程序插件,网站素材等建站资源,主要收集各类精品源码资源,包含CMS程序模板、网站源码、游戏源码、APP源码等 ,所有资源都没有水印适合搬运,我们致力于打造一个优秀的建站资源共享学习平台!

专业厂家,设备先进,技术力量雄厚,自动化生产技术先进,产品质量符合国家标准,价格合理,https://www.69shenlan.com/,具有质量保证,生产及时,交货快捷的特点。 我们的宗旨:做我们擅长的事,希望用我们的创意和创意为客户实现战略定位,塑造品牌,强化形象!
我们的要求:坚持“优质产品、优质服务、优惠价格、快速交货”的经营方针,努力开拓市场,真诚为客户服务! 我们的发展:以独特的专业和专业精神,https://www.69shenlan.com/1:1--

大数据

评论