前数据时代,人们是怎么分析问题的?


时间: 2021-07-30 09:46:10 人气: 4 评论: 0

专业厂家,设备先进,技术力量雄厚,自动化生产技术先进,产品质量符合国家标准,价格合理,https://www.69shenlan.com/,具有质量保证,生产及时,交货快捷的特点。 我们的宗旨:做我们擅长的事,希望用我们的创意和创意为客户实现战略定位,塑造品牌,强化形象!
我们的要求:坚持“优质产品、优质服务、优惠价格、快速交货”的经营方针,努力开拓市场,真诚为客户服务! 我们的发展:以独特的专业和专业精神,https://www.69shenlan.com/1:1--

麦肯锡分析问题的五步法:界定问题、设计分析内容、收集数据、解释结果、汇报结果。

这篇文章并没有什么现成的方法论可以拿来就用,而是梳理了一下各种分析方法之间的脉络关系,让你对分析一个问题的步骤有一个更全局的理解。

数据分析不是盯着数据想思路

很多人人觉得,数据分析就是把数据提取出来,然后对着这些数据“找规律”、“找异常”。所以很多人就**盯着一个数据想问题,我见过很多人都是这样做业务分析的。

他们思考的大概的心理过程是这样的:

1. 这个数据为什么是这样?

2. **不**是因为这种情况?

3. 其他维度数据不支持这个结论。

4. 回到第二步。

5. 一旦所有情况都不支持,回到第一步换一个维度继续思考。

这种分析方法其实就是不断提出假设,然后再不断证明假设的过程。

这种方法当然也**有成功的分析案例,不过因为我们不可能将所有的情况都考虑到,所以那些成功的案例往往带有一种灵光乍现的戏剧性和偶然性,很难复制。

所以当他们下一次再分析其他问题时,**发现之前的案例似乎没什么帮助。每次的分析都要重新开始,期待下一次的灵光乍现。

那么这类数据分析究竟如何组织思路呢?

过去分析也依赖数据

绝大部分学科在教学的时候都**讲到这门学科的历史,这有助于我们更好地掌握知识。要想找出数据分析的思路,我们也可以从数据分析的历史讲起。

今天存在的数据有 90%都是在过去几年中创建的,数据分析的快速崛起也就是近几年时间。在大数据时代之前,人们在没有“数据”的时候是怎么分析问题的呢?

麦肯锡公司是世界知名的资讯公司,它的主要业务就是版主别人分析和解决问题。并且有非常多和麦肯锡有关的分析问题、解决问题的方法论数据出版,是我们非常好的研究对象。

比如《麦肯锡意识》中就提到了麦肯锡公司在分析问题时**经历以下五个步骤:

  • 界定问题
  • 设计分析内容
  • 收集数据
  • 解释结果
  • 汇报结果

前数据时代,人们是怎么分析问题的

因为之后我们还**提到麦肯锡的其他一些方法,这边就暂时称这个分析法为麦肯锡五步法。

五步法每一步要解决的问题是:

  • 界定问题:利用适当的结构框架将问题简化细分成子问题。
  • 设计分析内容:找到为了解决上一步骤的子问题需要进行的工作。比如列出证实或证伪必须进行的分析,及它们的优先顺序。列出分析所需要的数据等。
  • 收集数据:依靠内部报告、行业报告、客户访谈等收集信息。
  • 解释结果:用直观的方式展现分析结果,比如图表化、故事化。
  • 汇报结果:将分析结果整理成简单易懂的结构进行汇报。

这个思路并不复杂,并且看起来和我们现在进行数据分析的思路看起来差不多,那为什么数据分析这两年突然就火起来了?

主要是因为近几年数据的采集便利性和准确性得到了大幅度的提升,使得可分析的问题变得更多更细。

在过去,数据的收集工作非常麻烦,很多领域的数据都是空白的。分析师一般只能通过问卷调查、客户访谈等方式获取数据。这样的数据采集方式效率很低。

1936年,美国当时非常有影响力的刊物《文学文摘》做了一个样本巨大的调查统计,他调查了1000万人,想要提前预测美国大选的结果。要知道当时美国有选举资格的人也只有4000万人而已,这在当时是一个巨大的工程。

《文学文摘》动用了900多人做这件事,最后收回240万份有效问卷。

在今天,要想收集到240万条数据,10个人的团队就足够了。

而且在过去,数据的有效性无法得到保证。

比如《文学文摘》的那次美国大选的调查统计,首先用户群体的选择就无法做到随机分布。他们选取的用户是汽车登记信息、各种俱乐部**的地址,以及美国电话**页。这些能获取到联系方式的调查对象都是富裕阶层的人群,底层人民根本接触不到,这样的样本的结构和实际的选民结构自然就很不同。

而且问卷的一个很大的问题就是能够收回来的问卷往往是带有情绪的意见,一些特定群体的声音被放大了。还有其他得到问题,比如“成见现象”等等,这类数据收集时的常见问题我将**在第七章详细介绍。

前数据时代很多咨询公司的书籍或者教学里有大量篇幅告诉你怎么和相关人员接触和沟通、怎么样提问题、怎么在电话里获取信息等等。要想掌握这些技能,你必须要有长时间的训练。

我们现在谈论的数据分析与过去最大的区别,在于我们获取数据的难度大大降低,海量数据的获取非常便捷。而且获取数据的手段可以实现记录用户行为,确保了数据的全面性和真实性。这些优势的出现解决了分析问题过程中“收集数据”阶段的问题,让繁琐的数据收集工作变得高效。

而整个分析问题的思路实际上依然遵循着界定问题到汇报结果的过程,所以我们之后的数据分析依然**参考这条主线结构,对其进行一些互联网行业下的改造。

不深入,不如不分析

有些人**说,这个五步法看起来没什么特别的,平平无奇嘛,我平时不也是这样分析问题的吗?

我首先发现日活跃用户数一直上不去,这算是界定问题吧?

然后我把这个问题拆分成新用户和老用户,以及各自的留存率。这是设计分析步骤。

然后我看了一下各个维度的数据,发现是老用户的留存率下降比较快,这是收集数据与解释数据。

最后,我得出结论,要提高老用户的留存率。

你看,我不就是完整按照这个五步法做的分析吗?但是为什么领导总是说我的分析还不够呢?

没错,这样的分析确实遵循了分析问题的步骤。界定问题,设计分析步骤,收集数据,解释数据,汇报结果,这五个步骤一步都不缺,但总感觉分析出的结论有些苍白,似乎还缺了点什么。

最重要的原因是,这种分析还不够深入,只描述了问题的现状。这也是很多初级数据分析师在实际分析工作中常犯的错误。拆解问题、找出问题的细节只是更好地定义问题,对于问题的解决没有太大的帮助。

如何深入分析我们放到后面再说,我们先看一下这样做分析的后果。

不知道具体原因而进行后续优化行为,有时不仅无益,而且有害。

这就好像身体不舒服去医院看病,医生简单地观察了一下确定是发烧了。然后医生不去深究发烧的病因是什么,开了一些退烧药就结束诊断。

这种生活中的例子可以帮助我们很容易这种做法的问题所在。

彼得圣吉在《第五项修炼》中提到类似的情况,他把问题的解决方案分为“根本解”和“症状解”。

症状解”能迅速消除问题的症状,但只有暂时的作用,甚至有加深问题的副作用,使问题更难得到根本解决。就像医生给我们开退烧药一样,虽然短期内体温正常了,身体感觉舒服了一点,但是问题的根源其实没有解决。如果是小病,免疫系统可以自愈的,那么运气还算好最后可以恢复健康。但如果病症是不能自愈的,那么这样简单粗暴的诊断方式**让病人错过最佳治疗时间,小病最后成了大病,反而加深了问题的严重性。等到止痛药已经不再能够抑制疼痛的时候,疾病也已经发展到难以收拾的地步。

前数据时代,人们是怎么分析问题的

另一种解决方法是“根本解”,从名字就可以看出这是解决问题根本的方式。要想达成这样的效果,我们处理问题时,要能够透过问题表象的重重迷雾,抓住问题背后的根源。知道了问题的核心所在,再对它进行一些针对性的动作,往往能起到四两拨千斤的效果。

要想找出根本解,医生**继续让我们做各种各样的检查。这种检查并不是为了再将问题细化下去,精确到究竟是发烧到几度。这样的细化问题对解决问题没什么太大的帮助。

医生**做一些能够确定真实的病因的检查,到底是细菌感染还是病毒感染,抑或是其他病症?确定了是哪种病症,再针对具体的病因对症下药,这才是治疗的根本解。

回到我们之前分析日活跃用户的问题,情况也是类似的。

APP的日活跃用户数不高,我们分析的时候拆解了这个问题,发现主要是因为老用户的留存率不高。这种做法就好像从“身体不舒服”中确定了“发烧”这个更细节的问题一样。在没有其他更多信息的情况下,要想治疗很可能就**成为症状解。

我们可能对这些人发送唤醒短信,或者开展“签到送积分”活动等运营方式来提高老用户的留存率。这类运营动作可以短期内提高APP的日活跃用户数,但是没有解决问题的根本。

留存率不高的根本原因可能是产品的体验不好,或者缺少一项用户非常需要的重要功能。一些虽然看到了唤醒短信重新回到APP,但是产品上的硬伤依然存在,这些用户的核心需求还是没有得到满足。不多久,这些用户又流失了。当你希望再次通过之前那些“成功”的运营手段唤醒他们时,他们已经对这类活动麻木了,成为了真正的流失用户。

由于真正的需求被拖延太久,日活跃用户数的问题已经相当严重,这时可能连根本解都已经没办法挽救整个局势的恶化。

这样可怕的局面,起因只是因为一次分析的不彻底导致的。所以仅仅描述业务现状,细化问题这样的分析方向不能给业务带来真正的改善,甚至带来更多更大的问题。

多问几个为什么

这类分析缺少的是对根本原因的深入分析,他们看似找到了问题的原因,但实际上这只是一个问题的结果。换句话说,他们找到的答案看起来像是回答了“为什么?”,但实际上只是更好地回答“发生了什么?”

比如前面提到的例子,他们在分析日活跃用户数比较低的原因时,最后找到的答案是“老用户的留存率不够高”。因此他们决定针对老用户其进行一些运营。可是在不清楚为什么老用户留存率不高的情况下,对他们开展运营动作不可能对症下药,投入产出比自然就**比较低。

所以接下去,我们要问“为什么?”。尤其在面对复杂的业务问题时,一个为什么还不够,我们要多问几个为什么。

有一个著名的分析方法——“5why分析法”。这种方法的含义是面对所有的业务问题都需要问五个为什么,不过这里的五是虚指,有时候可能要十几个为什么才能找到答案,而有时又只要两三个为什么就可以找到答案。

这里举一个著名的例子来说明这种分析的方法:

上世纪80年代,美国华盛顿广场有名的杰弗逊纪念馆,因年深日久,墙面出现裂纹。

为能保护好这幢大厦,专家进行了研讨。最初大家认为损害建筑物表面的元凶是侵蚀的酸雨。但进一步研究发现,墙面侵蚀最直接的原因是每天冲洗墙壁所含的清洁剂对建筑物有酸蚀作用。以下这段对话,帮助直接找到问题的关键点,便于从源头解决问题。

问:为什么杰弗逊纪念馆受酸雨影响比别的建筑物更严重?

答:因为清洁工经常使用清洗剂进行全面清洗。

问:为什么要经常清洗墙壁?

答:因为墙壁上有着大量的鸟粪。

问:为什么**有那么多鸟粪?

答:因为大厦周围生活着很多燕子。

问:为什么**有那么多燕子?

答:因为墙上有很多燕子爱吃的蜘蛛。

问:为什么**有那么多蜘蛛?

答:因为飞虫在这里繁殖特别快。

问:为什么飞虫在这里繁殖特别快?

答:因为大量的飞虫被**昏的灯光吸引。

由于发现解决的办法很简单,只要在天黑前关上整个大厦的窗帘。此前专家们设计的一套复杂而又详细的维护方案也就没有必要实施了。

这个案例中,杰弗逊纪念馆的墙面有问题,具体问题是墙壁出现裂纹,这是将问题细化。就像是从“身体不舒服”到“发烧”一样,它把问题从一个较大的问题缩小到一个较小的问题上。

接下来的步骤便是问”为什么“,为什么墙面出现裂纹?通过一连串的为什么,问题的根源从清洗剂到鸟类,从鸟类到蜘蛛,从蜘蛛到虫子,最后从虫子到灯光。最终找到了高效的解决方案。

但5why分析法有个问题,就是不知道问到第几个为什么时可以算是“最终的答案”。

有些人**在找到了燕子的问题后结束。那么对策就是破坏大厦周围的鸟巢,驱赶这些燕子。这需要花费大量的人力和时间,而且不可能附近所有的燕子。

有些人**在找到了蜘蛛的问题后结束,对策是找杀虫公司进行定期的消杀。这是一笔额外的开支,而且消杀的残留药液还**影响人的健康。

有些人**在找到了虫子的问题后结束,这已经很接近最终的答案了,但依然可能治标不治本。比如在大厦周围装满杀虫灯,或者喷洒驱虫的药水等等。

有些人找到了案例中最后灯光的问题,那么**昏后关上窗帘就可以解决。

结束了吗?

只要你想问,还可以一直问下去。

**昏时候为什么要开灯?答案是因为下班时间比较晚。

那么为什么下班时间晚?因为……

只要你想问,这个问题最终甚至可以追溯到宇宙的起源。

虽然我们很可能不知道提问到哪一步才是最终的结果,但是至少问的为什么越多,可选择的方案就越多,找出最高效方案的机**也就越大。在这个案例中关窗帘是一个非常高效的解决方案,所以可以在这一个问题结束。

哪怕只问一个为什么,只知道是清洗剂的问题,我们也至少知道一个解决的方向。不管解决的方法是否高效,至少要比不知道任何原因,只能对墙面裂纹进行修补要更好。

麦肯锡七步成诗法

回顾我们之前的一些结论:

五步法告诉我们一个单独问题的分析步骤是怎样的,以及数据在其中扮演什么样的角色。

5why分析法告诉我们一个复杂问题必须找出根本原因,在细化问题后一定要多问几个为什么。

两者的结合也让我们开始有了分步骤分析问题的思维雏形,先分析“发生了什么”,再分析“为什么”,每一个问题内部再用五步法进行分析。

本章最后一节,介绍一下麦肯锡分析问题的七步法,也有人叫他七步成诗法。

饭要一口一口吃,路要一步一步走。我把这个分析法放在这一章的最后,是因为这个分析法是前面几个知识的结合体,是在一个更宏观的角度提出的分析步骤。

先看一下七步成诗法的基本步骤:

  • 界定问题:明确要解决的问题,
  • 分解问题:将问题分解成议题
  • 优先排序:去除不重要的议题,优先处理最重要的议题。
  • 议题分析:制定详细的工作计划。
  • 关键分析:分析重要议题。
  • 归纳建议:汇总研究结果,建立论据。
  • 交流沟通:将数据与论证联系起来,准备你的故事。

为什么说这个七步法是之前的结合体呢?我们可以分析一下七步法的分析结构。

七步法的前三步界定问题,分解问题,优先排序,为的就是解决细化问题的具体步骤,是从“身体不舒服”到“发烧”的更详细的操作路径。其内部也是一个五步法,界定问题与五步法的第一步完全一样,不用太多解释。

后面的分解问题与优先排序实际上就是设计分析内容。在这里七步法中省略了收集数据与解释数据的表述,实际上在做分解问题和优先排序时必然**经过这两个环节。比如你必须知道一些基础数据,才能从分解出的问题中找出哪些议题可能更加重要,涉及的用户群体更大或者提升空间更大。所以这两个步骤应该对应的是五步法中的中间三步。

最后是汇报结果,因为七步法在这边还没有结束,所以这边没有写上这个步骤。不过如果我们只完成七步法的前三步,自然**有一个分析结果。我们**得到一个已经被分结果的,带有优先级顺序的细分问题。所以我在图中将这个步骤用虚线标记出来。

前数据时代,人们是怎么分析问题的

七步法中随后的第四步与第五步是议题分析和关键分析。是用来找出问题的具体的原因,也就是找出回答“为什么”的答案。这两个步骤,我们也可以用五步法将其分解开。

首先,这两步看起来没头没尾,没有界定问题的阶段,也没有汇报结果。之前的三步有开头没结尾。实际上我们很容易就能想到,前三步的结论就是这两步的开头,而这两步的结果也是后面步骤的开头。所以按照这个逻辑,七步法最后的两步应该是没头有尾的结构。这个结论在后面也得到了验证。

议题分析和关键分析对应的是五步法中的中间三步。通过这两个步骤,可以找出问题的根本原因。

前数据时代,人们是怎么分析问题的

七步法的最后两步,归纳建议和交流沟通是找出具体原因后的对应举措。这个步骤缺少了界定问题的阶段,也符合之前的猜想。

这一步其实也可以用五步法分析对应起来。

前数据时代,人们是怎么分析问题的

我们理清了人们在前数据时代是怎样分析问题的,找出了基本的分析框架。

总的来说就是先把问题拆成几个环环相扣的问题链,大体上分成三个步骤:怎么了,为什么,怎么办。然后每个问题内部,用五步法进行分析。最终完成整个分析,得出结论并解决问题。

我花这么大篇幅梳理分析问题的各种方法,目的是为了让大家理清各种方法之间的关系。我经常看到一些朋友看到一些好的方法就拿来用,没有经过深入思考,不知道这种方法在整个知识体系内的位置,发挥什么样的作用。因此,这一篇文章虽然不能让你马上应用到业务中,但可以理清一些分析法的脉络,让知识更加体系化。

这个模型是一个比较通用的模型,可以用来解决大部分的问题。在互联网环境下进行业务分析,我们还需要对这个模型进行一些改造,以方便我们进行分析时更加有效率。

具体的适合互联网环境的整体分析思路,将**继续更新,欢迎关注。

 

作者:三元方差,公众号:三元方差(sanyuanfangcha)

本文由 @三元方差 原创发布于人人都是产品经理。未经许可,禁止转载。

题图来自Unsplash,基于CC0协议

给作者打赏,鼓励TA抓紧创作!
5人打赏
---蛙鱼源码WAYUYM.COM---专业提供网站模板,网站源码下载,教程培训,程序插件,网站素材等建站资源,主要收集各类精品源码资源,包含CMS程序模板、网站源码、游戏源码、APP源码等 ,所有资源都没有水印适合搬运,我们致力于打造一个优秀的建站资源共享学习平台!

2年

评论